SC Magnets in High Radiation Environment at Supercolliders

- D. Chichili, S. Gourlay, N. Mokhov, S. Van Sciver, and A. Zeller
- Radiation issues for various machine configurations
 - -LHC IR Upgrade
 - -SLHC
 - -VLHC
- Radiation dose limits for various materials
- Radiation heat-loads in SC magnets
- Cryogenic implications

Radiation Loads in SC Magnets

- Main ring magnets ~ total beam energy 0.35 GJ (LHC), 1.1 GJ (SLHC), 3.2 GJ (VLHC) and beam loss rate (electron clouds, collimation efficiency)
- IR magnets ~ luminosity (upgrade energy, not luminosity)

Radiation Issues

- Quench stability (peak power density, heat transfer): OK at LHC and SLHC (block coil dipole-first, not $Cos\theta!$) with appropriate protection system
- Dynamic heat loads: OK at LHC (30 W/quad) and challenging at SLHC (3.5 kW in dipole-first)
- Radiation damage: 10-yr dose is 20 (LHC) to 50 MGy (SLHC block coil D1, not Cosθ!) averaged over cable height; neutron fluence seems to be not an issue 10¹⁶ to 4x10¹⁶ cm⁻² over 10 years (3x10¹⁷ at SLHC Cosθ)
- Residual dose rates Hands-on maintenance: OK at LHC and challenging at SLHC

SLHC Dipole-First

Peak power density is 49 mW/g in copper spacer and 13 mW/g in SC coil (left) and only 1.1 mW/g in the SC coils of block-type dipole (right). Total power dissipated in the dipole is 3.5 kW in either design.

10-year Peak Dose & Fluence in IR

Peak dose D and neutron fluence $F_{>0.1~MeV}$ in inner triplet SC coils accumulated over first 10 "LHC" years (=5×10⁷ sec). D (MGy/yr) = 50 ϵ (mW/g). Current designs. Very preliminary for VLHC-1 and VLHC-2.

Machine	Component	D (MGy)	$F_{>0.1~MeV}$, $10^{16}~\rm cm^{-2}$
LHC	Quad Q2B	22.5	1.04
LHC-2	Quad Q2B	45.0	2.08
SLHC	Cosθ D1	650	30
SLHC	Block coil D1	55.0	2.54
VLHC-1	Quad Q2B	~30	~1.5
VLHC-2	Quad Q2B	~84	\sim 4

Materials

- Superconductor (Nb₃Sn)
- Insulation
- Copper
- Structural materials

General limits for Nb₃Sn

- T_c goes to $5 \text{ K} 5 \text{ x } 10^{19} \text{ n/cm}^2$
- I_c goes to 0.9 I_{c0} at $14T 1 \times 10^{19}$ n/cm²
- B_{c2} goes to 14T 3 x 10^{18} n/cm²
- Neutron fluence at supercolliders is low enough that this isn't of too much concern

BUT

- NOTE: $E_n < 14 \text{ MeV}$
- Damage increases as neutron energy increases

General Radiation Dose Limits

Material Useful limit (MGy)

Copper $>10^4$

Iron, Stainless steel >>10³

Ceramics $>10^3$

Organics $\sim 10^2$

(most sensitive properties)

R&D Needed

* Need local radiation field at sensitive points at position of highest shear stress at position of peak compression at position of peak field

* Need data at reactors and at energies greater than 14 MeV on critical materials safety factors for materials composite structures

LARP IR QUAD Heat Loads

 Heat-loads as a function of radius and angle were first evaluated

• Nb₃Sn magnet designed with 20% quench margin can tolerate up to 40 mW/cm³ of peak power dissipation in the mid-

SLHC Dipole-First Heat Loads

Applied heat loads on coil elements in mW/mm³

SLHC Dipole-First Thermal Analysis

Cooling Conditions	Peak Temperature
External	27.7 K
External + Mid-Plane	24.8 K
External + Inter-Layer	11.3 K
External + Inter-Layer + Mid-Plane	11.3 K
Porous inner bore + All the above	7.0 K

Note: Calculations based on boundary conditions that sets coil perimeter at 1.9 K

Cryogenic Considerations

- Perspective from LHC point
 - Accelerator cryoplant: $4 \times 18 \text{ kW} = 72 \text{ kW}$ @ 4.5 K
 - Beam screen requires 1.7 W/m between 4.6 and 20 K (1.7 W/m x 27 km = 45.9 kW)
 - Remaining ~ 26 kW mostly goes to 1.9 K cooling
 - − 26 kW converts to ~ 11 kW @ 1.9 K due to lower thermodynamic efficiency (check)
 - Average 1.9 K heat load on LHC accelerator magnets < 0.4 W/m
 - IR 110 W/4 quads (total = 440 W @ 1.9 K)

Cryogenics for Luminosity Upgrade

- Luminosity upgrade from 10^{34} to 10^{35} results in increase in beam screen heat load from 1.7 W/m to 15 W/m
 - Increase total screen load to 405 kW @ 4.6 to 20 K!
 - Impact on 1.9 K load on main ring dipoles (0.4 W/m to \sim 0.8 W/m) or \sim 22 kW @ 1.9 K
 - Can be handled by changes in cooling configuration
- Dipole-First
 - -3.5 kW x 4 dipoles = 14 kW (30 times LHC) at 1.9 K, 4.5 K, higher T?
- Options to consider
 - Operating magnets at higher T, but can they be cooled & stabilized?
 - Use of HTS would help with overall power requirements if they could operate ~ 20 K or higher.

Summary

- Generate table
 - Characterize various IR designs in terms of radiation environment
 - Peak energy deposition
 - Fluence
 - Dose
 - Cryo load
 - Define material properties and acceptable design criteria for given dose
- Survey of fusion program results
 - Identify relevant information (no duplication)
 - Identify areas for focus
 - Nb₃Sn behavior in LHC IR radiation field
 - Develop appropriate tests (magnetization measurements in lieu of direct Jc)
- Identify existing rad hard materials for incorporation into magnet programs
- Focus R&D on what is left